Содержание
принцип работы, конструкция, схемы подключения
Качественное выполнение тех или иных технологических процессов в современном мире обеспечивается за счет высокоточного и дорогостоящего оборудования. Работа которого напрямую зависит от качества поставляемой электроэнергии и состояния электроснабжающих линий. Увы, далеко не все отечественные сети способны обеспечить безопасный режим работы для них, из-за чего создается угроза поломки. Для предотвращения которой используются специальные защитные устройства – реле контроля фаз (РКФ).
Они позволяют отключить нагрузку в случае каких-либо неисправностей в питающей сети. Все что может нести угрозу для оборудования и влияет на результативность его работы или технологический процесс, воспринимается как сигнал к немедленному обесточиванию и реле контроля переводит коммутирующие элементы в отключенное положение.
Конструкция и принцип работы
Рис. 1. Конструктивное исполнение реле на примере устройства CKF-2BT
Конструктивно устройство включает в себя входные и выходные контакты, индикаторы нормального электроснабжения и аварийной ситуации, регуляторы, обозначенные на схеме соответствующими номерами (рисунок 1):
- Индикатор аварийной ситуации;
- Индикатор подключенного питания нагрузки;
- Потенциометр, позволяющий выбирать нужный режим;
- Регулятор уровня асимметрии;
- Регулятор снижения напряжения;
- Потенциометр, позволяющий регулировать временную уставку срабатывания.
Далеко не все модели предоставляют весь комплекс настроек по вышеприведенным параметрам. Они зависят от назначения конкретного реле и сферы применения.
Рис. 2. Принципиальная схема работы
В нормальном режиме к цепи питания от источника ЭДС E1 (рисунок 2) подается напряжение к потребителю, будь то двигатель, станок или другое оборудование. Реле контроля фаз R подключается в отпайку через соответствующие клеммы, обозначенные на схеме, как L1, L2, L3 и нулевым проводом N. Внутри устройства собрана логическая схема на транзисторах, которая посылает сигнал с выходных контактов на разрыв катушки пускателя P для отключения. При необходимости сигнал отключения можно настроить как для обесточивания потребителя, так и отключения внешней электрической сети.
В случае аварийной ситуации – пропадания одной из фаз, короткого замыкания, резкого увеличения токов, изменяется гармоническая составляющая электрических параметров сети. На что реагирует устройство защиты и посылает по цепям питания через клеммы 24 и 21 на катушку контактора соответствующий сигнал на отключение.
После срабатывания силовых контактов в практике электроснабжения потребителей может произойти естественное восстановление параметров питающей сети, при которой произойдет выравнивание фаз. При этом реле возвратит контакты во включенное положение, за счет чего реализуется система АПВ и на обмотки двигателя или другого потребителя возобновится подача напряжения.
За счет кнопок “Пуск” и “Стоп” можно осуществлять ручное управление питанием электрического прибора.
Назначение и функции
Данная технология применяется в сети трехфазных нагрузок. Наиболее востребована для защиты электродвигателя синхронного или асинхронного, трехфазных станков высокой точности, технологичной электроники, насосов. Заметьте, что неправильное чередование фаз приведет к низкой эффективности его работы, перегреву и снижению уровня изоляции, что может привести к пробою.
Применяется для следующих целей:
- Для коммутации преобразовательного оборудования, которому важно соблюдение последовательности фаз: источников питания, выпрямителей, инверторов и генераторов;
- Для систем АВР (введения в работу резервных источников питания) или подключения системы аварийного освещения;
- Для специального оборудования – станков, крановых установок, мощность которых составляет не более 100 кВт;
- Для электроприводов трехфазных двигателей, имеющих мощность не более 75 кВт.
Для коммутации однофазной нагрузки данное устройство не используется.
В целом реле контроля фаз применяется для различного промышленного и бытового оборудования и является обязательным предохранителем для тех схем управления, в которых требуется постоянный мониторинг величины напряжения и других параметров внешних линий.
В трехфазных сетях осуществляет контроль:
- уровня напряжения, реализуемая, в преимущественном большинстве, для оборудования такого класса в случаях, когда его величина выходит за установленные пределы;
- чередования фаз – выполнит коммутацию в случае аварийного слипания фаз или при их неверном расположении относительно питающих вводов оборудования;
- пропадания фазы – производит отключение потребителя в случае обрыва фазы и последующего отсутствия напряжения;
- перекоса фаз – производит коммутацию в случае изменения фазного или линейного напряжения по отношению к номинальному значению.
Преимущества реле контроля фаз
В сравнении с другими устройствами аварийных отключений данные электронные реле отличаются рядом весомых преимуществ:
- в сравнении с реле контроля напряжения не зависит от влияния ЭДС питающей сети, так как его работа отстраивается от тока;
- позволяет определять аномальные скачки не только в трехфазной сети питания, но и со стороны нагрузки, что позволяет расширить спектр защищаемых компонентов;
- в отличии от реле, работающих на изменение тока в электродвигателях, данное оборудование позволяет фиксировать еще и параметр напряжения, обеспечивая контроль по нескольким параметрам;
- способно определить дисбаланс уровней питающих напряжений из-за неравномерности загрузки отдельных линий, что чревато перегревом двигателя и снижением параметров изоляции;
- не требует формирования дополнительной трансформации со стороны рабочего напряжения.
В отличии от реле, работающих только по напряжению обеспечивает действующую защиту от регенерированного напряжения, вырабатываемого обратными ЭДС. В случае, когда одно из фазных напряжений пропадает, двигатель продолжает набирать достаточный уровень энергии с остающихся двух. При этом в обесточенной фазе будет генерироваться ЭДС от вращения ротора, который продолжает крутиться от двух фаз в аварийном режиме.
Из-за того, что контакторы электродвигателей не размыкаются от реле при такой работе, возникает риск повреждения электрической машины с ее дальнейшей поломкой. Реле контроля, в свою очередь, способно обнаружить смещение фазового угла, за счет чего обеспечивается полноценная защита.
Такая функция особенно актуальна, когда рабочий режим двигателя, в случае его реверсивного вращения, способен повредить вращаемый элемент или травмировать работника. Как правило, такая ситуация возникает при внесении изменений во время обесточивания электрической машины, смене фазных нагрузок, порядка чередования фаз и прочих.
Технические характеристики
Среди технических параметров, реализуемых реле контроля фаз необходимо выделить:
- питающее напряжение;
- диапазон контроля перенапряжения;
- диапазон снижения уровня напряжения;
- границы временной задержки для включения после скачка напряжения;
- границы временной задержки для включения после падения напряжения;
- время, расходуемое на отключение в случае пропадания фазы;
- номинальный ток на контактах электромагнитного реле;
- количество контактов для совершения коммутационных опраций;
- мощность устройства;
- климатическое исполнение;
- механическая и электрическая износоустойчивость.
Схема подключения определяет порядок чередования фаз, поэтому нормальное питание нагрузки возможно при условии их правильного соблюдения на этапе монтажа и настройки. При этом существует возможность регулировки задержки коммутации для различных режимов работы устройства. Таким образом, для двигателей, в момент пуска можно отстроить время задержки срабатывания от 1 до 3 сек, для выдержки пусковых токов.
То же относиться к возможности отстройки аварийного срабатывания в случае перегрузки фаз, где время до коммутации можно регулировать от 5 до 10 сек.
Обзор популярных реле контроля фаз
- Реле РНПП-311 украинского производства является одним из наиболее популярных и подходящих для сетей постсоветского пространства. Аббревиатура расшифровывается как реле напряжения, перекоса и последовательности фаз. Современные модификации, в дополнение к стандартным параметрам способны отслеживать еще и частоту напряжения.
- OMRON K8AB данная модель осуществляет контроль не только за снижением, но и за превышением уровня напряжения, выполняя тем самым функции ограничителя или разрядника, причем, куда более эффективно.
Имеет ряд модификаций, отличающихся регулировками порогов срабатывания и техническими параметрами.
- Carlo Gavazzi DPC01 отличается двумя реле на выходных клеммах устройства. Имеет несколько точек регулировки различных параметров, и переключатель режимов. Предоставляет 7 возможных функций по выставлению задержек, интервалов или цикличных функций.
- Реле ЕЛ-11 отечественного производства контролирует параметры электрической сети, может применяться как в закрытых отапливаемых, так и в не отапливаемых помещениях. Устанавливается в любом положении, но требует защиты от прямого попадания на них солнечных лучей и атмосферной влаги.
Типичные схемы подключения
В большинстве случаев, на корпусе каждого устройства производителем устанавливаются все необходимые данные о способе подключения конкретного реле. Для примера заберем несколько схем известных производителей:
Схема подключения РКФ РНПП-311
На схеме показано подключение клеммного ряда к соответствующим фазам линии L1, L2, L3 и нейтрале N. На выходе возможно получить две цепи управления “Выход 1” и “Выход 2”, отличающиеся по уровням напряжений.
Схема подключения реле OMRON
Питание осуществляется по вводным каналам L1, L2, L3 и через нейтраль N. На выходе получается два варианта трехфазная трехпроводная система и трехфазная четырехпроводная, для работы с соответствующим коммутатором.
Схема подключения РКФ Carlo Gavazzi
В отличии от предыдущих вариантов клеммы вводов L1, L2, L3 запитываются через предохранители. Блок регулировки параметров позволяет отстраивать соответствующий режим работы и пределы отключения по ним. Два выхода с возможностью ручной коммутации посылают управленческие сигналы на переключение тех или иных устройств.
Последние две схемы демонстрируют работу вторичных цепей отключения нагрузки с соответствующей временной задержкой по этим клеммам. Как видите, все схемы подключения имеют идентичные компоненты, предназначенные для отслеживания всех параметров сети, способных сигнализировать сбой в электроснабжении трехфазных потребителей.
Использованная литература
- Фигурнов Е. П. «Релейная защита» 2004
- Гуревич В.И. «Электрические реле. Устройство, принцип действия и применения. Настольная книга инженера» 2011
- Басс Э.И., Дорогунцев В.Г. «Релейная защита электроэнергетических систем» 2002
- А. С. Дорофеюка, А. П. Хечумяна, «Справочник по наладке электроустановок» 1975 г
- Чернобровов Н.В. «Релейная защита», 1974 г.
принцип работы, виды, маркировка, регулировка и подключение
Результатом технической ситуации, когда статорные обмотки двигателя потребляют тока больше установленных параметрических значений, является избыточное тепло. Этот фактор вызывает снижение качества изоляции двигателя. Оборудование выходит из строя.
Времени реакции тепловых реле перегрузки обычно недостаточно, чтобы обеспечить эффективную защиту от избыточного тепла, создаваемого высоким током. В таких случаях только реле контроля фаз видится действенным защитным устройством.
Содержание статьи:
- Общая информация по прибору
- Типичное исполнение защитных реле
- Плюсы использования устройств
- Обнаружение фазового сбоя
- Выявление фазового реверса
- Обнаружение дисбаланса напряжения
- Как подключить прибор контроля?
- Конструктивные элементы изделия
- Шаги настройки приспособления
- Маркировка устройства контроля фаз
- Выводы и полезное видео по теме
Общая информация по прибору
Функциональность электрических приборов подобного типа существенно шире, нежели только лишь защита от перегрева и КЗ.
На практике отмечены эффективные свойства реле выбора перегруженных фаз, которые в конечном счете обеспечивают комплексную защиту.
Один из многочисленных вариантов конструкторских решений в производстве реле фаз. Однако, несмотря на разнообразие корпусов и схемных конфигураций, функциональность приборов едина
Благодаря устройствам отслеживания состояния фаз достигаются преимущества:
- увеличение срока службы двигателя;
- сокращение дорогостоящего ремонта или замену мотора;
- уменьшение времени простоя из-за дефектов двигателя;
- снижение рисков поражения электрическим током.
Кроме того, приспособление обеспечивает надежную защиту от возгорания и от КЗ обмоток двигателя.
Типичное исполнение защитных реле
Существует два основных типа защитных приборов, предназначенных для использования в составе трехфазных систем, — реле измерения тока и измерения напряжения.
Плюсы использования устройств
Преимущественная сторона токовых защитных реле по отношению к очевидна. Этот тип приборов функционирует независимо от влияния ЭДС (электродвижущей силы), которая неизменно сопровождает фазовый сбой при перегрузках двигателя.
Кроме того, устройства, действующие по принципу измерения тока, способны определять аномальное поведение мотора. Контроль возможен либо на стороне линии в цепи ответвления, либо на стороне нагрузки, где установлено реле.
Так выглядит одна из моделей реле контроля напряжения. Подобные устройства могут применяться не только для производственных нужд, но также и для частных хозяйств
Приборы, контролирующие процесс по принципу измерения напряжения, ограничиваются обнаружением ненормальных условий работы только на стороне линии, где подключено устройство.
Тем не менее приспособления, чувствительные к изменению напряжения, тоже обладают важным преимуществом. Заключается оно в способностях приборов подобного типа обнаруживать ненормальное состояние, не зависящее от состояния двигателя.
К примеру, тип реле, чувствительный к изменениям тока, обнаруживает ненормальное состояние фаз только непосредственно в процессе работы двигателя. А вот устройство измерения напряжения обеспечивает защиту непосредственно перед запуском мотора.
Также среди преимуществ аппаратов измерения напряжения выделяются простая установка и меньшая цена.
Этот тип приборов защиты:
- не нуждается в дополнительных трансформаторах тока;
- применяется независимо от нагрузки системы.
А для его работы требуется всего лишь подключить напряжение.
Обнаружение фазового сбоя
Сбой фазы вполне возможен по причине выхода из строя предохранителя одной из частей системы распределения электроэнергии. Механический отказ коммутационного оборудования или обрыв одной из линий электропередач также провоцируют сбой фазы.
Защита электродвигателя, организованная через реле контроля. Такой способ позволяет более эффективно эксплуатировать моторы, без опасения их быстрого вывода из строя
Трехфазный двигатель, работающий на одной фазе, вытягивает необходимый ток из оставшихся двух линий. Попытка его запустить в однофазном режиме приведет к блокировке ротора и двигатель не запустится.
Время реакции на единицу тепловой перегрузки может быть слишком продолжительным, чтобы обеспечить эффективную защиту от чрезмерного нагрева. Если для защиты от него не установлено , то когда происходит сбой из-за перегрева, появившегося в обмотках двигателя.
Защита трехфазного двигателя от фактора отказа фазы затруднена по той причине, что недогруженный трехфазный двигатель, работающий на одной фазе из трех, генерирует напряжение, называемое регенерированным (обратной ЭДС).
Оно образуется внутри оборванной обмотки и практически равняется величине утраченного подводимого напряжения. Поэтому реле измерения напряжения, контролирующие только его величину, в таких ситуациях не обеспечивают полной защиты от фактора отказа фазы.
Схема подключения прибора контроля фаз и напряжения в цепь управления трехфазным мотором. Это классический схемный вариант, применяемый на практике повсеместно
Более высокая степень защиты может быть получена с помощью устройства, которому доступно обнаружение смещения фазового угла, как правило, сопровождающего отказ фазы. В нормальных условиях трехфазное напряжение составляет 120 градусов по фазе относительно друг друга. Сбой приведет к смещению угла от нормальных показателей в 120 градусов.
Выявление фазового реверса
Реверсирование фазы может произойти:
- Выполняется техническое обслуживание на моторном оборудовании.
- В систему распределения электроэнергии внесены изменения.
- Когда восстановление мощности приводит к другой фазовой последовательности, что была до отключения электроэнергии.
Обнаружение разворота фазы важно, если двигатель, работающий в обратном направлении, может повредить ведомый механизм или, что еще хуже, – нанести физический вред обслуживающему персоналу.
Кроме всего прочего, использование защитных реле – это обеспечение безопасности рабочего персонала: 1 – оборванная фаза; 2 – шаговое напряжение
Правила эксплуатации электросетей требуют применения защиты от возможного реверсирования фаз на всем оборудовании, включая транспортные средства для перевозки персонала (эскалаторы, лифты и т. п.).
Обнаружение дисбаланса напряжения
Несбалансированность обычно проявляется, если входящие линейные напряжения, подаваемые электроэнергетической компанией, имеют разные уровни. Дисбаланс может иметь место, когда однофазные нагрузки освещения, электрических выходов,однофазных двигателей и прочего оборудования подключаются на отдельных фазах и не распределяются сбалансированным образом.
В любом из таких случаев в системе образуется дисбаланс тока, который снижает эффективность и сокращает срок службы двигателя.
Несбалансированное или недостаточное напряжение, прикладываемое к трехфазному двигателю, приводит к дисбалансу тока в обмотках статора, равному многократному значению разбаллансировки межфазных напряжений. Этот момент, в свою очередь, сопровождается увеличением нагрева, что является основной причиной быстрого разрушения изоляции двигателя.
Сгоревшая обмотка статора мотора – можно сказать, обычное явление там, где не предусматривалось внедрение в цепь управления релейного контроля
Исходя из всех описанных технических и технологических факторов, становится очевидной важность применения этого типа реле и не только для случаев эксплуатации электрических двигателей, но также для генераторов, трансформаторов и прочего электрооборудования.
Как подключить прибор контроля?
Конструкции реле, осуществляющих контроль фаз, при всем имеющемся обширном ассортименте изделий, имеют унифицированный корпус.
Конструктивные элементы изделия
Клеммники для подключения электрических проводников, как правило, выведены на фронтальную часть корпуса, что удобно для проведения монтажных работ.
Сам прибор сделан под установку на рейку типа DIN либо просто на ровную плоскость. Интерфейс клеммника обычно представляет собой стандартный надежный зажим, предназначенный под крепление медных (алюминиевых) жил сечением до 2,5 мм2.
Передняя панель прибора содержит регулятор/регуляторы настройки, а также световую контрольную индикацию. Последняя показывает присутствие/отсутствие питающего напряжения, а также состояние исполнительного механизма.
Среди элементов настройки потенциометра может быть индикатор аварий, индикатор подключенной нагрузки, потенциометр выбора режима, регулировка уровня асимметрии, регулятор падения напряжения, потенциометр регулировки задержки по времени
Подключение трехфазного напряжения выполняется на рабочих клеммах устройства, обозначенных соответствующими техническими символами (L1, L2, L3). Монтаж нулевого проводника на таких устройствах обычно не предусматривается, но этот момент конкретно определяется исполнением реле — типом модели.
Для соединения с цепями управления используется вторая интерфейсная группа, состоящая обычно не менее чем из 6 рабочих клемм. Одной парой контактной группы реле коммутируется цепь катушки магнитного пускателя, а через вторую — цепь управления электрооборудования.
Все достаточно просто. Однако каждая отдельная модель реле может иметь свои особенности подключения. Поэтому применяя устройство на практике, следует всегда руководствоваться сопроводительной документацией.
Шаги настройки приспособления
Опять же в зависимости от исполнения, конструкция изделия может оснащаться разными схемными вариантами настройки и регулировки. Есть модели простые, предусматривающие конструктивно вывод на панель управления одного-двух потенциометров. И есть устройства с расширенными элементами настройки.
Элементы настройки микропереключателями: 1 – блок микропереключателей; 2, 3, 4 – варианты установки рабочих напряжений; 5, 6, 7, 8 – варианты установки функций асимметрии/симметрии
Среди таких расширенных настроечных элементов часто встречаются блочные микропереключатели, расположенные непосредственно на печатной плате под корпусом прибора или в специальной открываемой нише. Установкой каждого из них в то или иное положение создается требуемая конфигурация.
Настройка обычно сводится к тому, чтобы выставить посредством вращения потенциометров или расположением микропереключателей номинальные значения защиты. Например, для контроля состояния контактов уровень чувствительности разницы напряжений (ΔU) обычно ставят на значение 0,5 В.
Если необходимо контролировать линии питания нагрузки, регулятор чувствительности разницы напряжений (ΔU) настраивают на такое граничное положение, где отмечается точка перехода от рабочего сигнала к аварийному с небольшим допуском в сторону номинала.
Как правило, все нюансы настройки приборов доходчиво описывает сопроводительная документация.
Маркировка устройства контроля фаз
Приборы классического исполнения маркируются просто. На передней или боковой панели корпуса наносится символьно-цифровая последовательность или же обозначение отмечается в паспорте.
Вариант маркировки одного из популярных устройств отечественного производства. Обозначение вынесено на фронтальной панели, но встречаются также вариации с размещением на боковинах
Так, устройство российского производства на подключение без нулевого провода маркируется:
ЕЛ-13М-15 АС400В
где: ЕЛ-13М-15 – наименование серии, АС400В – допустимое напряжение переменного тока.
Образцы импортной продукции имеют маркировку несколько иную.
Например, реле серии «PAHA» отмечено следующей аббревиатурой:
PAHA B400 A A 3 C
Расшифровка примерно такая:
- PAHA — наименование серии.
- B400 – стандартное напряжение 400 В или подключенное от трансформатора.
- А – регулировка потенциометрами и микропереключателями.
- А (Е) – тип корпуса под монтаж на DIN рейку или в специальный разъем.
- 3 – размер корпуса в 35 мм.
- С – конец кодовой маркировки.
На некоторых моделях перед пунктом 2 может добавляться еще одно значение. Например, «400-1» или «400-2», а последовательность остальных не изменяется.
Так маркируются аппараты контроля фаз, наделенные дополнительным интерфейсом питания под внешний источник. В первом случае напряжение питания 10-100 В, во втором 100-1000 В.
С принципом действия, конструктивными особенностями и назначением выключателя нагрузки ознакомит , прочитать которую мы очень советуем.
Выводы и полезное видео по теме
Видеоролик посвящен описанию и обзору отдельно взятого изделия от компании EKF. Однако по такому же принципу действуют практически все выпускаемые аппараты контроля фаз:
При всем многообразии приборов на рынке сложно определить какой-никакой стандарт маркировки. Если зарубежные производители маркируют по одним канонам, то отечественные — по другим. Тем не менее всегда есть возможность обратиться к справочным данным, если требуется точная расшифровка характеристик.
Хотите поделиться собственным опытом в выборе и установке реле напряжения, предназначенного для контроля фаз? Располагаете полезными сведениями, которые пригодятся посетителям сайта? Пишите, пожалуйста, комментарии в расположенном ниже блоке, публикуйте фотоснимки по теме, задавайте вопросы.
Все продукты | Шнайдер Электрик
Доступ к энергии
Автоматизация и управление зданием
Критическая мощность, охлаждение и стойки
Промышленная автоматизация и управление
se.com/eg/en/work/products/low-voltage-products-and-systems/»>Распределение среднего напряжения и автоматизация сети
Жилой сектор и малый бизнес
Аккумулятор солнечной энергии и энергии
Низковольтные изделия и системы
Верхние диапазоны
Верхние диапазоны
Верхние диапазоны
Верхние диапазоны
Верхние диапазоны
Верхние диапазоны
Верхние диапазоны
Верхние диапазоны
Диапазоны: 45
Диапазоны: 14
Диапазоны: 15
Диапазоны: 27
Диапазоны: 25
Диапазоны: 49
Диапазоны: 15
Диапазоны: 1
Диапазоны: 35
Все продукты | Шнайдер Электрик
- se.com/eg/en/work/products/access-to-energy/»>
Автоматизация и управление зданием
Критическая мощность, охлаждение и стойки
Промышленная автоматизация и управление
Доступ к энергии