Skip to content

Как сделать металл: Как получается металл | Металлургический портал MetalSpace.ru

Как получается металл | Металлургический портал MetalSpace.ru

Руда – смесь соединений железа и кислорода – оксидов железа. Извлекают железо из руды при высокой температуре. Для этого ее нагревают с восстановителем – веществом, способным отобрать кислород у железа. Самым доступным, пожалуй, единственно возможным восстановителем в древности были дрова. Но дрова выделяют слишком мало тепла, так как в них много воды; даже в сухой древесине содержание горючего элемента (углерода) невелико. Есть в дровах и водород, но он связан с кислородом, входящим в состав древесины, а поэтому не может отнимать кислород у окислов железа.

Однако уже в древности люди заметили, что при небольшом доступе воздуха в процессе горения дрова обугливаются, превращаясь в древесный уголь, состоящий из углерода и водорода. При сгорании одного килограмма древесного угля выделяется в три-четыре раза больше теплоты, чем при сжигании одного килограмма дров. Сгорая, он дает высокую температуру, при которой идет восстановление оксидов железа. Углерод, соединяясь с кислородом, превращается в диоксид (углекислый газ) и оставляет почти чистый металл.

Установить, кто первый предложил плавить металл на древесном угле, вероятно, так же трудно, как установить автора первой заявки на изобретение колеса, лука, или лодки. Невозможно также установить, в какой стране впервые провели плавку металла на древесном угле. Однако известно, что древнейшие цивилизации Египта, Китая, Индии пользовались этими материалами. Более того, древесный уголь используется и сегодня.

Стволы деревьев, очищенные от веток, складывались или в яму (ямный способ) или в конусообразную кучу диаметром от 3 – 4 до 10 – 12 метров и высотой 3 – 7 метров (костровой способ). В куче оставлялись проходы для воздуха и выхода дымовых газов. Нижняя часть вертикальной кучи уплотнялась глиной, и вся поверхность кучи засыпалась землей. Дрова в середине кучи разжигались через специальное растопочное отверстие. Дым выходил в канал, оставленный в центре кучи, или, в более совершенных конструкциях куч, через трубу, специально сооружаемую в центре кучи. Костровой способ существовал в России и, например, в Швеции, которая являлась крупнейшим экспортером древесного угля вплоть до ХХ в.

При ямном способе яму обычно располагали на косогоре, для того чтобы стекала смола, образующаяся в процессе углежжения.

Искусство углежога состояла в том, чтобы, манипулируя открыванием и закрыванием отверстий для подачи воздуха, позволить сгореть в куче как можно меньшему количеству древесины с тем, чтобы оставшаяся часть под действием выделяющегося тепла подвергалась сухой перегонке – выделила воду, связанный кислород и превратилась в древесный уголь. Ямный способ давал уголь низкого качества, мелкий и малопрочный. Да и использовались для его производства ветки, мелкая древесина. При костровом способе использовалась отборная древесина, преимущественно хвойные. Со временем, древесный уголь стал все шире применяться для кузнечных работ и плавки железа. А его в свою очередь требовалось все больше и больше.

Чем выше температура в устройстве для производства железа или чугуна, тем быстрее идет процесс. Еще древние мастера освоили значение дутья для улучшения процессов горения топлива, поэтому стали использовать меха для подачи воздуха. Больше дутья, больше воздуха, выше температура, больше металла. Крупнее установка, выше ее производительность. Вот основное направление, по которому шло развитие агрегатов по производству железа, а потом и чугуна.

Первые мастера с большим трудом изготовляли 2 – 5 килограммов металла в день. Проходили столетия, металла требовалось все больше, печи росли и в ширину, и высоту, потребляли все больше руды, воздуха и древесины. Производительность агрегатов исчислялась уже сотнями килограммов и даже тоннами.

Несколько столетий назад были созданы аппараты для выплавки железа из руд, которые используют и в наши дни – это доменные печи. Само название происходит от старинного русского глагола «дмати» – дуть, и наглядно характеризует технологический процесс производства металла.

Доменная печь – пустотелое сооружение, составленное из двух усеченных конусов. Сверху в домну загружали уголь и руду, а снизу вдували воздух. Уголь сгорал в нижней части доменной печи, выделяя тепло и превращаясь в диоксид углерода (углекислый газ). Чуть выше углекислый газ встречался с новыми порциями древесного угля и обращался в монооксид или – «угарный газ», как его называют в просторечии. А уже на следующем ярусе монооксид углерода восстанавливал оксиды железа и вновь обращался в углекислый газ. Руда исчезала. Вместо нее образовывались жидкий металл и шлак. Они просачивались через слой материалов и собирались в нижней части агрегата.

В старину температура в домнах была недостаточно высокой, и потому металл не плавился, а в виде губчатой массы-крицы оседал на дно печи. Крицу извлекали и отковывали в горячем состоянии, выжимая из глубины на поверхность легкие неметаллические включения. Однако кричная металлургия была возможна лишь при небольших, в нашем современном представлении, масштабах производства. Сегодня в доменных печах получают только жидкий металл – чугун, который используется для изготовления разнообразных отливок. Однако большая часть чугуна перерабатывается в сталеплавильных агрегатах: конверторах, мартенах, в которых, удаляя из чугуна углерод, кремний, марганец, серу, получают прочную и упругую сталь.

В чугуне до 3% углерода, а в стали только 0,3%.

Самая распространенная сталь – 3, наш основной конструкционный материал- это тот же чугун, но в котором 0,3% углерода. Это сталь, из которой делают автомобили, арматуру, полосу и т.д.

Многие сотни лет черные металлы получали, используя древесный уголь. Для получения одной тонны металла расходовали от двух до четырех тонн такого угля.

А чтобы приготовить тонну древесного угля, требовалось 10 – 12 кубометров леса. Строились железоделательные заводы, и начинал гулять топор по соседним лесам. В конце XVI в. Королева Елизавета Английская вынуждена была запретить использовать лес для производства угля. Через 25 – 30 лет выплавка железа была прекращена почти по всей Англии. А в XVIII в. русская императрица Елизавета специальным указом запретила строить железоделательные заводы в радиусе 200 верст вокруг Москвы.

Но что Елизаветы? В древнем Египте при фараоне Рамзесе II работало более 1000 медеплавильных печей. Использовался древесный уголь, который выжигали из пальм. А потом (лет через 300) медеплавильное производство практически кончилось. Пальмы вырубили и перешли на привозную медь.

ПОДЕЛИСЬ ИНТЕРЕСНОЙ ИНФОРМАЦИЕЙ

Как сделать металл прочнее

Предыдущая новость

28.07.2021

Cледующая новость

Покупая изделия из металла мы рассчитываем на то, что они прослужат нам долго. Но к сожалению, качество металла нашим ожиданиям соответствует далеко не всегда. Недозакаленная сталь будет гнуться, перезакаленная — крошиться. Плохая новость: в магазине этого узнать не получится. Хорошая новость в том, что все можно поправить в домашних условиях.

Проверка металла на качество

Но сначала нужно понять, стоит ли закаливать сталь вообще. Например, вы купили набор ножей. Они могут быть недостаточно закалены или наоборот, при закалке произошли нарушения и сталь перезакалили. Значит нож будет либо гнуться, либо крошиться

Для проверки нам понадобится самый обычный напильник или любой железный предмет, схожий по форме и функциям (рашпиль, пилка, небольшая пила). Просто проведите напильником по металлическому изделию.

  • Если они как бы липнут друг к другу — купленное изделие недостаточно закалено и будет гнуться.
  • Если наоборот, как бы отскакивают друг от друга — значит купленая вещь хрупкая, перезакалена и в процессе пользования будет крошиться (и гнуть ее не рекомендуется, сломается).

Закалка металла в домашних условиях

При этом вещь совсем необязательно возвращать в магазин, все можно поправить самостоятельно.

Закалка металла состоит из двух этапов:

  • нагрев;
  • охлаждение.

Чтобы сделать металл прочнее в домашних условиях, необходимо не только соблюдать меры по технике безопасности. Самое главное — не перегреть металл, потому что сине-черный цвет невозможно будет сточить наждачкой. Чтобы разогреть сталь для закалки достаточно довести ее до красного цвета.

Нагрев металла

В зависимости от размера изделия для закалки можно использовать :

  • паяльник;
  • резак по металлу;
  • газовую или электрическую плиту;
  • костер.

Но у костра есть свои нюансы — энергии тепла может не хватить для закалки некоторых видов стали.

Охлаждение

Чаще всего металл после закалки охлаждается водой. Если закалялось изделие целиком, его нужно поместить в воду полностью. Если, к примеру, у ножа нагревалось только лезвие, его достаточно промыть некоторое время под проточной водой.

Для закалки легированных и углеродистых сталей ипользуются не только вода, но и масло. Процесс происходит следующим образом:

  • нагрейте изделие до необходимой температуры;
  • горячий металл опустите в воду для быстрого охлаждения;
  • перенесите в масло и оставьте до полного охлаждения.

Сразу после нагрева металл нельзя опускать в масло — оно может воспламениться. Масло позволяет свести образование трещин на металле при охлаждении к минимуму, что обеспечивает сохранность сложных по форме деталей.

 
Вернуться к списку новостей

Читайте также

23.11.2022

Чем обезжирить поверхность металла перед покраской

Читать далее

10.11.2022

Виды швеллеров

Читать далее

17.10.2022

Чем отличается труба ВГП от электросварной трубы

Читать далее

Как изготавливаются металлы

Ниже приводится статья из книги «Читатель ванной дяди Джона»

У вас есть кольцо на пальце? Он сделан из золота, серебра, платины или другого природного металла? Затем подумайте вот о чем: металл в этом кольце на вашем пальце старше, чем планета, на которой вы стоите.

ЧТО ТАКОЕ «МЕТАЛЛ»?

С научной точки зрения, металлы — это встречающиеся в природе химические элементы, обычно твердые, блестящие и хорошо проводящие как тепло, так и электричество. Примеры включают железо, золото, серебро, медь, цинк, никель и т. д., а также элементы, которые мы обычно не считаем металлами. Одним из них является натрий — металл, который мы регулярно употребляем в пищу: натрий — это мягкий серебристо-белый металл, который обычно связывается с элементом хлора с образованием хлорида натрия или поваренной соли.

Другим является астат, который был обнаружен в 1940 году в лаборатории, где он был создан искусственно. Он не был обнаружен в природе до 1943 года. Астат очень радиоактивен, и считается, что на Земле существует всего одна его унция. Из 118 известных химических элементов 88 являются металлами.

НАСТОЯЩАЯ АЛХИМИЯ

Откуда взялись все эти металлы? Вот очень упрощенное объяснение:

Все элементы, включая металлы, состоят из одного и того же вещества: атомарного материала — электронов, нейтронов и протонов. Атомы различных элементов можно отличить друг от друга по количеству содержащихся в них протонов. (Количество нейтронов и электронов может различаться даже среди атомов одного и того же элемента.) Например, атом водорода содержит только один протон. Атом золота имеет 79. Это верно для каждого из бесчисленных атомов водорода и золота во Вселенной.

Если бы вы могли найти способ смешать 79 атомов водорода в один атом, у вас был бы атом с 79 протонами, а значит, у вас был бы атом золота. И это почти то же самое… за исключением того, что это происходит внутри звезд.

В НИХ ЗВЕЗДАХ ЗОЛОТО

Примерно 13,7 миллиардов лет назад впервые появилась материя в виде атомов двух легчайших элементов: водорода с одним протоном и гелия с двумя. Они остаются, безусловно, самыми распространенными элементами во Вселенной.

По прошествии многих миллионов лет первые атомы водорода и гелия собрались в облака пыли и газа, настолько огромные, что их можно было бы измерить световыми годами (1 световой год = 6 триллионов миль или 9,5 триллиона километров). В конце концов облака поддались собственной огромной гравитации и рухнули, образовав первые звезды. А звезды были разрушителями атомов — достаточно горячими, чтобы разрушить эти атомы водорода и гелия и снова соединить их воедино, переделав их в более крупные атомы других, более тяжелых элементов.

Например, если объединить два атома водорода, получится атом с двумя протонами — или гелий. Соедините вместе три атома водорода, и вы получите атом с тремя протонами — литий, первый и самый легкий металл. Объедините вместе три гелия, и вы получите атом с шестью протонами — углерод. Это то, что происходит со всеми звездами, которые вы видите на небе ночью. В массивных процесс может привести к производству все более и более тяжелых элементов, включая такие металлы, как титан (22 протона) и железо (26 протонов). Если они особенно массивны, они могут производить самые тяжелые металлы, такие как золото (79протонов) и урана (92 протона). Это одна из вещей, которые делают звезды, и именно так все элементы, включая все эти блестящие металлы, образуются в природе.

Итак, как они сюда попали?

ВНИЗ НА ЗЕМЛЮ

В первые несколько миллиардов лет после Большого Взрыва родились миллиарды и миллиарды звезд, как мы только что описали. Многие из них были чрезвычайно массивными (в сотни раз больше нашего Солнца), а массивные звезды живут относительно недолго — в некоторых случаях всего несколько миллионов лет (более мелкие звезды могут жить миллиарды лет) — а затем умирают, взорвавшись как сверхновые.

И когда эти массивные звезды взорвались миллиарды лет назад, они выбросили созданные ими тяжелые элементы и отправили их в космос. Они, так сказать, «засеяли» вселенную элементами, в том числе металлами. И сверхмассивные, непостижимые количества — триллионы, триллионы и триллионы мегатонн. Это означает, что когда новые звезды образовались позже, они уже были «засеяны» металлами, оставленными этими сверхновыми.

Одной из более поздних богатых металлом звезд было наше Солнце. Беглый взгляд на эту историю:

  • Около 4,5 миллиардов лет назад массивное космическое облако пыли и газа, засеянное большим количеством более тяжелых элементов, коллапсировало, начав процесс формирования новой звезды.
  • Большая часть водорода и гелия в облаке стала частью новообразованной звезды. Остальная пыль и газ, включая металлы, скопились в расплавленной массе, вращаясь вокруг новой звезды. Вращательное движение расплющило массу (представьте себе вращение теста для пиццы) в расплавленный вращающийся диск.
  • За миллионы лет, по мере того как диск остывал, его части слипались то здесь, то там, и эти сгустки стали планетами в нашей Солнечной системе. А металлы в пыли? Они стали всеми металлами, найденными на всех планетах, включая нашу собственную.

Наша Доля: На Земле много металла. Почти треть массы планеты составляет элемент железа, большая часть которого находится в ядре планеты. Еще 14 процентов составляют магний, 1,5 процента — никель и 1,4 процента — алюминий. это 49процентов планеты. Остальные металлы Земли, включая «драгоценные» металлы, такие как золото, серебро, платина и палладий, существуют лишь в следовых количествах. Остальное — неметаллическая часть — составляет около 30 процентов кислорода и 15 процентов кремния, а также меньшее количество множества других неметаллических элементов.

СМОТРИ! БЛЕСТЯЩИЙ!

В течение как минимум нескольких миллионов лет люди и их предки использовали инструменты из таких материалов, как дерево, кость и камень, чтобы немного облегчить себе жизнь. Это не сильно облегчило их жизнь: Homo sapiens почти все время своего существования были относительно примитивными кочевым охотниками и собирателями. Затем, около 10 000 лет назад, они начали открывать способы работы с «новым» материалом: металлом.

Первыми металлами, используемыми людьми, были те, с которыми ранним кузнецам не нужно было много работать, чтобы сделать их пригодными для использования. Это самородные металлы — металлы, встречающиеся в природе в чистом виде или в естественной смеси с другими элементами таким образом, что сохраняются их полезные свойства. К ним относятся медь, олово, свинец, серебро и золото.

Кто-то мог просто найти самородки этих металлов в русле реки или в корнях выкопанного дерева и подумал, что они привлекательны. Возможно, они колотили их каменными молотками и обнаружили, что могут придавать им форму. Это могло привести к использованию металлов в ювелирных изделиях или украшениях или к изготовлению металлических инструментов и оружия, таких как топоры, ножи и мечи, — значительное улучшение по сравнению со старыми каменными орудиями. Все это в конечном итоге привело к тому, что люди начали активно искать больше металлов, открывать шахты, торговать металлами между разными народами и зарождаться металлургическая промышленность. Однако это произошло — это произошло во многих местах по всему миру.

МЕТАЛЛУРГИЯ

Около 8000 лет назад люди начали открывать, что они могут изменять металл. Возможно, они обнаружили это случайно, или, возможно, люди просто проявили творческий подход, или, возможно, это была комбинация того и другого. В любом случае были разработаны новые процессы для изменения металлов, а затем для создания совершенно новых, которых вообще не существовало в природе, — с огромным улучшением качества. В течение следующих нескольких тысяч лет добыча полезных ископаемых и металлообработка стали неотъемлемой частью большинства культур на Земле, а металл стал одним из веществ, наиболее сильно изменивших цивилизацию в истории человечества. Каждый из этих новых процессов связан с огнем, и вполне вероятно, что эксперименты с одним привели непосредственно к следующему. Наиболее важные достижения:

  • Отжиг. Это просто процесс нагревания металла до вишнево-красного цвета. Это восстанавливает старый, хрупкий металл до его первоначального ковкого состояния, позволяя переделывать его и продлевая срок его использования. Отжиг можно проводить при относительно низких температурах (медь можно отжигать на костре). Впервые это было сделано где-то около 6000 г. до н.э., где-то на Ближнем Востоке и, возможно, в Европе и Индии примерно в то же время.
  • Плавка. В этом процессе металлы плавятся в жидком состоянии, что дает гораздо больше свободы для придания им различных форм. Металлы были впервые выплавлены около 5000 г. до н.э., после разработки более совершенных гончарных печей, которые могут производить гораздо более высокую температуру, чем можно было бы достичь в простом открытом огне.
  • Производство сплавов. Это процесс смешивания различных металлов, пока они находятся в расплавленном состоянии. Это началось около 3300 г. до н.э. (начало бронзового века), с первым производством бронзы — смеси меди и олова, гораздо более твердой и прочной, чем любой из ее компонентов.
  • Извлечение. Благодаря дальнейшему совершенствованию технологии печей и последующей возможности достижения более высоких температур были разработаны методы, позволяющие извлекать металлы из руды. Впервые это было сделано из железа на Ближнем Востоке около 1500 г. до н.э., что ознаменовало начало железного века.
  • Плавка, производство сплавов и добыча практиковались древними народами в Европе, Азии, Южной Америке и даже на севере, вплоть до Мексики, но не в остальной части Северной Америки или в Австралии, пока не прибыли европейцы. Эти простые процессы остаются основой, вероятно, крупнейшей и самой успешной отрасли в истории человечества: металлургической промышленности.

ЖЕЛЕЗО

Железо — самый распространенный металл на Земле. Но, как и в случае с большинством металлов, добраться до него сложно, потому что он очень редко встречается в чистом виде в природе. Чаще всего он существует в оксидах железа — молекулах, состоящих из железа и кислорода, которые встречаются в смеси с породой в железной руде. Чтобы получить железо, нужно избавиться от кислорода и камня. Вот наиболее распространенный процесс, используемый сегодня:

  • Подготовка: После добычи железная руда измельчается в порошок. Затем огромные магнитные барабаны используются для отделения бедной железом руды от богатой железом. (Руда, богатая железом, прилипает к бочкам, остальное отпадает.) Богатый железом порошок смешивают с глиной и превращают в окатыши размером с мрамор, которые затем подвергают термообработке. Это позволяет более эффективно сжигать на следующем этапе, плавке.
  • Плавка: окатыши плавятся в печи вместе с коксом — углем, который был переработан в почти чистый углерод — и известняком. Интенсивная жара разрывает железо-кислородные связи в руде, высвобождая кислород в виде газа, который соединяется с углеродным газом, выделяющимся из горящего кокса, с образованием CO2 (двуокиси углерода). CO2 выходит из верхней части печи, а железо, лишенное кислорода, плавится (при температуре около 2800°F) и собирается на дне печи. Известняк также плавится и связывается с примесями, образуя расплавленные отходы, известные как шлак. Шлак легче железа, и его постоянно удаляют с верхней части печи.
  • Результат: Продуктом этого процесса является передельный чугун из сплава железа. Он имеет относительно высокое содержание углерода, около 5 процентов, что делает его очень хрупким, и поэтому чугун в основном бесполезен, за исключением производства других сплавов железа, особенно стали.

СТАЛЬ

Сегодня около 98 процентов производимого во всем мире чугуна идет на производство стали, наиболее широко используемого металла или металлического сплава в истории. Процесс начинается с заливки расплавленного чугуна в сталеплавильные печи, где его обрабатывают для удаления любых оставшихся примесей и снижения содержания углерода до 0,1–2%. Это одна из главных характеристик стали: все, кроме очень немногих из сотен различных типов стали, содержат углерод в таких количествах. Это снижает хрупкость, увеличивая при этом прочность и твердость. Затем в смесь добавляются различные элементы, в зависимости от типа производимой стали. Два примера:

  • Марганцевая сталь, или мангаллой, содержит около 13 процентов марганца, что делает ее чрезвычайно ударопрочной. Это делает мангаллой популярным для использования в горнодобывающих инструментах, дробильном оборудовании и бронировании военной техники.
  • Нержавеющая сталь

  • на самом деле является названием для широкого спектра сталей, но все они имеют одну общую черту: хром, примерно от 10 до 30 процентов, в зависимости от типа. Хром на поверхности нержавеющей стали связывается с кислородом воздуха, образуя слой оксида хрома, который придает нержавеющей стали очень твердый, блестящий вид и делает ее устойчивой к коррозии. А если он поврежден или поцарапан, хром повторно связывается с кислородом, и образуется новый слой — так что он самовосстанавливается. Нержавеющая сталь используется в самых разных изделиях, от кухонной утвари до хирургического оборудования и уличной скульптуры. (Он также на 100 % подлежит вторичной переработке.)

АЛЮМИНИЙ

Наиболее распространенной рудой, используемой для производства алюминия, является боксит, глиноподобное вещество, примерно на 50 процентов состоящее из глинозема, связанного кислородом. Как и в случае с железом, получение алюминия означает избавление от кислорода и минералов в руде. Этот процесс намного сложнее, чем извлечение железа, и был разработан только в конце 1800-х годов. (Алюминий был идентифицирован как уникальный элемент только в 1808 году. ) Первая часть системы, наиболее часто используемая сегодня, называется процессом Байера, названным в честь австрийского химика Карла Байера, который изобрел его в 1877 году.

Процесс Байера: Бокситы добывают и измельчают, затем смешивают с водой и щелочью и нагревают в резервуарах. Это тепло и щелочь заставляют глинозем в руде растворяться в воде, а примеси оседают на дно. Затем вода, богатая глиноземом, откачивается и фильтруется для удаления дополнительных примесей, а затем перекачивается в огромные отстойники, где вода выпадает в осадок. То, что остается, представляет собой белый кристаллический порошок, который примерно на 99% состоит из оксида алюминия. Кристаллы промывают и дают им высохнуть.

Следующий этап известен как процесс Холла-Эру, названный в честь двух химиков, разработавших его независимо друг от друга в 1886 году. В этом процессе кристаллы оксида алюминия (вместе с минералами, помогающими разлагать оксид алюминия) выплавляются при температуре около 1760°F в стальных чанах. Но этого недостаточно, чтобы разорвать алюминий-кислородные связи в оксиде алюминия; они намного прочнее, чем связи железо-кислород. Таким образом, через расплавленный материал проходит мощный электрический ток, что приводит к разрыву связей. Кислород высвобождается в виде газа и притягивается к углеродным стержням, подвешенным над расплавленной смесью, где он связывается с углеродом с образованием газообразного CO2 (точно так же, как в процессе плавки железа). Освобожденный алюминий плавится и собирается на дне кастрюли. На данный момент это 99,8% чистый алюминий.

Алюминий широко используется в чистом виде (алюминиевая фольга изготавливается почти из чистого алюминия) и чаще всего в сплавах, смешанных с такими элементами, как кремний, медь и цинк. Некоторые из них прочнее стали и имеют дополнительное преимущество, заключающееся в том, что они намного легче. Обычное использование включает в себя кухонную посуду, банки для безалкогольных напитков и блоки автомобильных двигателей.

ПЛАТИНА

Платина — блестящий, серебристо-белый металл, очень редкий и обладающий некоторыми уникальными качествами: это один из самых плотных металлов, но при этом очень ковкий; он чрезвычайно устойчив к коррозии под воздействием температуры, ржавчины или воздействия таких материалов, как кислоты; и у нее очень высокая температура плавления 3215°F (точка плавления золота всего 1064°, а железа 1535°). Платина существует в чистом виде в природе, но чаще встречается в смеси с другими элементами, включая кислород, медь и никель. Более 90 процентов платины, добываемой сегодня в мире, поступает всего из четырех месторождений: трех в России и одного в Южной Африке. Производство достаточно сложное.

Для производства одной унции платины необходимо добыть более десяти тонн руды. Краткое описание процесса выглядит следующим образом:

  • Руда добывается, измельчается в порошок и смешивается с водой и химикатами. Через смесь продувается воздух, создавая пузырьки, к которым прилипают крошечные частицы платины. Пузырьки поднимаются на поверхность бака, образуя мыльную пену. Пену собирают, сушат и плавят при температуре выше 2700°F. Более тяжелые частицы — металлы — опускаются на дно печи. Более легкие примеси собираются поверх расплавленного металла и удаляются. Затем используются сложные химические процессы для отделения платины от любой меди, никеля и других металлов, которые все еще присутствуют, пока, наконец, не будет получена чистая платина.

БЛЕСТЯЩИЕ КУСОЧКИ

  • Железная руда выплавляется в доменной печи: Перегретый воздух — до 2200°F — «вдувается» в печь, заставляя ее гореть намного горячее, чем могло бы быть в противном случае. Типичная доменная печь на сталелитейном заводе работает 24 часа в сутки, 365 дней в неделю, до 20 лет, после чего ее необходимо заменить.
  • Чистая сталь очень восприимчива к ржавчине. Оцинкованная сталь — это сталь, покрытая цинком, который очень устойчив к ржавчине.
  • Основной химический компонент рубинов, изумрудов и сапфиров: алюминий.
  • Для чего используется большая часть чрезвычайно редкого металла платины? Каталитические нейтрализаторы — устройства на автомобилях, используемые для очистки выхлопных газов. Платина является исключительно хорошим катализатором: она способствует преобразованию токсичных газов в выхлопных газах, таких как окись углерода, в нетоксичные газы.
  • Это миф, что у коренных американцев не было металлообработки. У многих племен на самом деле были давние традиции обработки меди, особенно в районе Великих озер, где металла было в изобилии.
  • Вся платина, добытая в истории, могла бы поместиться в подвале среднего дома.

Эта статья перепечатана с разрешения Uncle John’s 24 Karat Gold Bathroom Reader . Сборщики информации из Института читателей ванных комнат откопали бесценную коллекцию удивительных, удивительных, головокружительных и веселых статей. 24-каратное золото наполнено малоизвестной историей, случайным происхождением, странными новостями, секретами знаменитостей и городскими легендами.

С 1987 года Институт читателей ванных комнат возглавил движение в защиту тех, кто сидит и читает в ванной (и везде, если на то пошло). Серия Uncle John’s Bath Reader, выпущенная тиражом более 15 миллионов книг, является самой продолжительной и самой популярной серией в своем роде в мире.

Если вам нравятся книги «Сегодня я узнал», я гарантирую, что вам понравятся книги Института читателей ванных комнат, так что читайте их!

Откуда берется металл?

Чистые металлы являются важнейшими элементами материи. Известно 118 элементов, найденных в природе или созданных в лаборатории. Большинство из этих элементов являются металлами, но есть небольшое количество неметаллических элементов, таких как углерод, и несколько «промежуточных» элементов, называемых металлоидами. Все металлические элементы, найденные на Земле, были либо созданы внутри звезды на начальных фазах Вселенной, либо людьми в лабораториях.
Ознакомьтесь с изделиями из металла от IMS!

Что такое металлы?

Металлы сохраняют определенные физические свойства, которые отличают их от неметаллов и металлоидов. Наиболее очевидная разница заключается в том, что металлы очень хорошо проводят тепло и электричество. Они, как правило, твердые, когда твердые, и имеют глянцевый блеск. Еще одним важным качеством металлов является то, что они пластичны, что означает, что их можно ковать или обрабатывать в различных формах. Их также можно расплавить и отлить в формы или разрезать на станках для создания ценных предметов.

Происхождение металла

Все металлы Земли возникли миллиарды лет назад, когда впервые появилась Вселенная. Внутри сверхгорячей среды звезд простые атомы водорода и гелия сливались, создавая более тяжелые элементы. После того, как первоначальные звезды взорвались, пыль и газ от взрыва попали в нашу местную галактику и были вовлечены в создание нашей Солнечной системы. Частицы, вращающиеся вокруг нового солнца, слипались в планеты, включая Землю.

Как делают металл?

Большая часть металла на Земле, особенно железа, находится в ядре Земли. Металл неравномерно рассеян по земной коре, смешивается с горными породами, соединяется с кислородом и другими элементами. Некоторые типы горных пород, такие как гранит, содержат только следовые количества металла. Металл, который мы используем для изготовления зданий, компьютеров, автомобилей и грузовиков, а также многих других продуктов, поступает из подземных месторождений минеральных руд, содержащих высокие концентрации металлов.

Производство металлических сплавов

Первым шагом в производстве металлических сплавов является извлечение сырой руды из земли. Затем руда обрабатывается для удаления неметаллических материалов, таких как камень и мусор. Затем сплавы металлов создаются путем плавления различных металлических веществ и их смешивания. Как только вновь включенное металлическое соединение охлаждается, получается твердый материал из металлического сплава. Процесс экстракции может включать:

  • измельчение руды в порошок
  • нагрев до высоких температур
  • ополаскивание водой или в химической ванне
  • фильтрация шлама
  • осаждение жидкости
  • применение электрического тока для разрыва прочных химических связей

После извлечения металла его можно использовать для многих целей: от алюминиевых банок до стальных строительных лесов, от оцинкованных крыш до электронных схем.

Раннее производство металла человеком

Первые люди обнаружили небольшие кусочки металлов, распространенных в природе, таких как медь, олово и золото, которые они вковывали в украшения и другие предметы. Они научились смешивать металлы для создания новых металлов, называемых сплавами, улучшая их характеристики.
Например, смешав медь с оловом, они создали бронзу, которая гораздо сложнее и лучше подходит для оружия, чем чистая медь. Основные металлические сплавы, такие как сталь, представляющая собой железо, смешанное с небольшим количеством углерода, позволяют производить некоторые из наиболее часто используемых сегодня металлических предметов, таких как автомобили, строительные конструкции, бытовая техника и многое другое.

Варианты из металлического сплава

Почти все металлические элементы могут быть сплавлены в различные типы, при этом каждый металлический сплав обладает своими уникальными физическими характеристиками и полезными свойствами.