Skip to content

Ветрогенератор что такое: Ветрогенераторы: принцип действия, типы, применение, эффективность работы

Что такое ветрогенератор?

Ветрогенератором называют генератор электрического тока, который предназначен для вырабатывания независимого электричества посредством превращения силы ветра в электрическую энергию. Современные ветрогенераторы — это высокотехнологическое произведение искусства. Современный агрегат вырабатывает мощность от 5 киловатт до 4500 кВт мощности. Конструкция ветрогенератора позволяет использовать силу ветра от 4-х метров в секунду. При помощи современных ветрогенераторов можно обеспечивать даже островные территории электрическим током, не говоря уже об обычном использовании генератора – прямым запуском тока в сеть. С недавнего времени появилась возможность решать проблемы с мощными потребителями энергии. Областью использования ветрогенераторов обычно являются поля, мелководье, горы или же любые другие участки, с хорошим ветропотенциалом.

Суть работы генератора очень проста и практически не изменилась с момента появления первого приспособления, работающего на силе ветра. Потоки ветра, которые набегают на лопасти, расположенные на высоте 50-100 метров, вращаются из-за прохождения через них ветра. Все вращение передается по валу к асинхронному или синхронному генератору через мультипликатор.

Широкое применение нашли ветряки без использования мультипликатора, потому что их отсутствие привело к увеличению производительности. Если направление ветра изменилось, датчики, находящиеся на башне ВГ, дают команду на разворот лопастей в направлении ветра. Достижение стабилизации вращения ветрогенераторного ветроколеса происходит за счет поворота лопастей и их элементов вокруг собственной оси, и под определенным углом по направлению ветра.

Работа ветрогенераторов может быть одиночной или групповой. Бывают случаи работы ветрогенератора попарно с дизельными генераторами, для экономии расхода топлива. По несложным подсчетам можно понять, какой толк в ветрогенераторе, расхода киловатт часов за один год. К примеру, если мощность ветрогенератора 800 КВт, а средняя скорость ветра 6 метров в секунду, то производство энергии будет равное полтора миллиона КВт ч. , а при скорости 5 метров в секунду – 1 100 000 КВт.ч. электричества.

Генератор ветряной энергии, мощность которого 2000 КВт, при средней скорости ветра за год 6 метров в секунду, произведет энергии за год 3 700 000 КВт часов, а если средняя скорость ветра в 5 метров в секунду 2 300 000 кВт часов электрической энергии.



Дата публикации: 01.10.2015

Похожие записи:

  • Технология угольной генерации в Германии не сможет повлиять на сокращение выбросов CO2 — GLOBALDATA
  • Ветрогенераторы свердловских разработчиков будут работать на Мальдивах
  • По мнению стэндфордских ученых, не всегда есть смысл хранить «зеленое» электричество
  • Из истории альтернативной энергетики
  • Устройство и принцип работы солнечного коллектора вакуумного типа
  • Альтернативный источник энергии

Прогуляемся по ветропарку? | Compasskids

Привет, дорогой друг!

Мы продолжаем наше увлекательное путешествие в мир ветроэнергетики и приглашаем тебя сегодня узнать о том, что такое ветрогенераторы и ветропарки. Для начала ты можешь освежить свои знания о ветрогенерации и почему она так полезна для здоровья Земли, прочитав или перечитав наш первый материал на эту тему .

Итак, что такое ветрогенератор? Это генератор электрической энергии, предназначенный для превращения энергии ветра в электрическую. Современные ветрогенераторы позволяют использовать энергию даже самых слабых ветров. Да, это тот самый «ветряк» с лопастями на длинном шесте, который ты можешь видеть в полях, выезжая куда-то на природу.

Давай посмотрим, из чего состоит ветрогенератор, и рассмотрим его основные элементы.

  • Само «тело» ветрогенератора, в котором можно выделить лопасти, турбину, преобразователь механической энергии в электрическую, и систему торможения;
  • Аккумулятор, где накапливается выработанная ветряком энергия. Этот модуль позволяет стабилизировать энергопоток при резкой перемене скорости ветра. К одному генератору рекомендовано подключать хотя бы 1 аккумулятор.
  • Контроллер заряда – это устройство отвечает за правильную работу аккумулятора. Оно автоматически направляет выработанную энергию в аккумулятор, отключает его при полной зарядке и предотвращает глубокую разрядку при чрезмерном потреблении.
  • Инвертор – данный модуль преобразует постоянный ток, получаемый из аккумулятора обратно в переменный, пригодный для использования в домашней сети.

Что такое ветропарки?

Несколько ветрогенераторов, объединенных в единую сеть, называют ветропарком. Крупные ветропарки могут состоять из сотни и более ветрогенераторов. Как правило, ветроэлектростанции (ВЭУ) расположены на удалении 3–10 диаметров ветроколеса друг от друга. Выработанная ветряком электроэнергия поступает на подстанцию, откуда затем передается в общую электрическую сеть.

Ветроэлектростанции бывают нескольких типов. Самый распространенный – наземная ВЭУ, устанавливаемая на естественных или искусственных возвышенностях. Другой тип ВЭУ – прибрежная. Ее возводят на небольшом удалении от берега моря или океана. Еще один тип ВЭУ – шельфовая ветроустановка. Ее строят в море, в нескольких десятках километров от берега. Из-за этого ее практически не видно с берега, она не занимает полезную территорию и более эффективна из-за постоянных морских ветров. Для монтажа такой установки на шельфе и ее обслуживания необходима специальная морская техника.

Оценка ветровых ресурсов

Одним из этапов подготовки площадки для строительства ветропарка является измерение ветровых ресурсов. Первоначально специалисты проводят анализ наземных и спутниковых баз метеоданных, определяют розу ветров и перспективное место размещения ВЭС. Изучается рельеф местности, уточняются параметры ветрового потока, определяется оптимальное количество измерительного оборудования и места его установки.

Наиболее часто ветромониторинг проводят с использованием специальных комплексов-мачт с установленными на нескольких уровнях датчиками измерения скорости и направления ветра, влажности, температуры и других параметров. в последние годы для определения ветровых ресурсов все чаще используют удаленные системы измерения – Light Detection and Ranging (LIDAR) и Sonic Detection And Ranging (SODAR). LIDAR – лазерный дальномер или в переводе «лазерное обнаружение и обработка изображений ранжированием». Он осуществляет измерения с помощью световых волн, посылая лазерный луч в воздух.

Ветромониторинг проводят в течение длительного периода времени (от года), после завершения данные фильтруются и корректируются под долгосрочный период. Последний этап особенно важен, поскольку позволяет смоделировать ветровую статистику на площадке не просто за конкретный период измерений, на 15-25 лет вперед (то есть на время эксплуатации запланированной ВЭС), за счет чего повышается точность прогноза выработки энергии ВЭС. Обработанные таким образом данные мониторинга необходимы для составления точной карты ветропотенциала территории, выбора оптимального типоразмера и модели ВЭУ, сравнения различных вариантов размещения ветроэлектростанции. Во внимание также принимаются все объекты, способные влиять на ветер, в том числе крупные сооружения и лесополосы.

Интересно всё это, правда? Поэтому стоит попросить родителей отвезти тебя на экскурсию в ветропарк. А пока напомним тебе преимущества ветроэлектростанций

  • Минимальные потери при передаче электроэнергии
  • Ветряк занимает небольшую площадь в сравнении с другими энергообъектами
  • Практически бесконечный источник энергии
  • Расположенную рядом территорию можно использовать для сельскохозяйственных целей
  • Экологически чистая энергия, без вредных выбросов СО2 и других парниковых газов, а также иного негативного влияния на окружающую среду и человека

Российская компания «Росатом», которая строит атомные электростанции (АЭС) в России и по всему миру, занимается также развитием и ветрогенерации в нашей стране. И не только ею, а вообще безуглеродной энергетикой. Это так называемый «зеленый квадрат» –развитие ветрогенерации, солнечной генерации, гидрогенерации и атомной энергетики. При использовании этих энерготехнологий тепловые выбросы и объемы выделяемого углекислого газа равны нулю. Считается, что переход планеты к возобновляемой энергетике позволит в большей степени решить накопившиеся проблемы с климатом.

Основы ветроэнергетики | NREL

Ветер возникает, когда поверхность земли нагревается солнцем неравномерно. Энергия ветра
можно использовать для выработки электроэнергии.

Текстовая версия

Ветряные турбины

Ветряные турбины, как и ветряные мельницы, монтируются на башне для захвата большей части энергии.
На высоте 100 футов (30 метров) или более над землей они могут воспользоваться более быстрым
и менее бурный ветер. Турбины улавливают энергию ветра своими пропеллерными
лезвия. Обычно на валу монтируются две или три лопасти, образующие ротор .

Лезвие действует подобно крылу самолета. Когда дует ветер, карман низкого давления
воздух образуется на подветренной стороне лопасти. Затем воздушный карман низкого давления тянет
лезвие к нему, заставляя ротор вращаться. Это называется лифт . Сила подъема на самом деле намного больше, чем сила ветра против
передняя сторона лезвия, которая называется перетащить . Сочетание подъемной силы и сопротивления заставляет ротор вращаться, как пропеллер, и
вращающийся вал вращает генератор, вырабатывающий электричество.

Исследования NREL в области ветроэнергетики в основном проводятся в кампусе Флэтайронс, недалеко от Боулдера, штат Колорадо.

Ветряные турбины коммунального масштаба на ветряной электростанции Сидар-Крик в Гровере, Колорадо. Фото Денниса Шредера / NREL
Платформа, Университет штата Мэн, часть консорциума DeepCWind. Фото из Университета штата Мэн

Наземная ветровая энергетика

Ветряные турбины могут использоваться как автономные установки или они могут быть подключены к
сеть общего пользования или даже в сочетании с фотоэлектрической системой (солнечным элементом). За
коммунальные (мегаваттные) источники энергии ветра, большое количество ветряных турбин
обычно строятся близко друг к другу, образуя ветряную электростанцию ​​ , также называемую ветряной электростанцией . Сегодня несколько поставщиков электроэнергии используют ветряные электростанции для снабжения своих клиентов электроэнергией.

Автономные ветряные турбины обычно используются для перекачки воды или связи.
Однако домовладельцы, фермеры и владельцы ранчо в ветреных районах также могут использовать ветряные турбины.
как способ сократить свои счета за электричество.

Распределенная энергия ветра

Малые ветровые системы также могут использоваться в качестве распределенных энергетических ресурсов. Распределенный
Энергетические ресурсы относятся к множеству небольших модульных технологий производства энергии.
которые можно комбинировать для улучшения работы системы подачи электроэнергии.
Для получения дополнительной информации о распределенном ветре посетите офис технологий ветроэнергетики Министерства энергетики США.

Оффшорная ветроэнергетика

Оффшорная ветроэнергетика — относительно новая отрасль в США. Америки
первая морская ветряная электростанция, расположенная в Род-Айленде, недалеко от побережья острова Блок,
в декабре 2016 года. В отчете Wind Vision Министерства энергетики США показано, что к 2050 году морские ветряные электростанции могут быть доступны во всех прибрежных районах страны.

Дополнительные ресурсы

Для получения дополнительной информации об энергии ветра посетите следующие ресурсы:

Основы ветроэнергетики
Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США

Карты и данные о ветроэнергетике
WINDExchange Министерства энергетики США

Как работают ветряные турбины
Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США.

Малые ветроэлектрические системы
Программа энергосбережения Министерства энергетики США

Американская ассоциация ветроэнергетики

Energy Kids Wind Basics
Управление энергетической информации США Energy Kids

Ветряная турбина — Энергетическое образование

Энергетическое образование

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Рис. 1. Ветряная турбина. [1]

Ветряные турбины работают путем преобразования кинетической энергии ветра в механическую энергию, которая используется для выработки электроэнергии путем вращения генератора. Эти турбины могут быть наземными или морскими ветряными турбинами. [2]

Компоненты турбины

Рис. 2. Иллюстрация компонентов ветряной турбины (нажмите, чтобы увеличить). [3]

Современные ветряные турбины бывают разных размеров, но все типы, как правило, состоят из нескольких основных компонентов: как крылья самолета. Одна сторона лезвия изогнута, а другая плоская. Ветер движется быстрее вдоль изогнутой кромки, создавая разницу в давлении с обеих сторон лопасти. Лопасти «толкаются» воздухом, чтобы выровнять разницу давлений, заставляя лопасти вращаться. [5]

  • Гондола – Гондола содержит набор шестерен и генератор. Вращающиеся лопасти связаны с генератором шестернями. Шестерни преобразуют относительно медленное вращение лопастей в скорость вращения генератора примерно 1500 об/мин. [5] Затем генератор преобразует энергию вращения лопастей в электрическую энергию.
  • Башня – Лопасти и гондола установлены на вершине башни. Башня сконструирована таким образом, чтобы удерживать лопасти несущего винта над землей при идеальной скорости ветра. Башни обычно находятся на высоте 50-100 м над поверхностью земли или воды. Оффшорные мачты обычно крепятся ко дну водоема, хотя ведутся исследования по разработке мачты, которая плавает на поверхности. [2]
  • Визуализация турбины

    У MidAmerican Energy Company есть отличное видео о строительстве ветряной турбины, для просмотра нажмите здесь.

    Видео ниже, созданное UVSAR, подробно показывает детали турбины.

    Для дальнейшего чтения

    • Ветер
    • Электричество
    • Ветряная электростанция
    • Генератор
    • Механическая энергия
    • Или просмотрите случайную страницу

    Ссылки

    1. 2.0 2.1 Управление ветроэнергетических технологий (29 ноября 2018 г.