Skip to content

Что такое теплоизолятор: Теплоизоляция (термоизоляция, тепловая изоляция) — что это?

Что такое теплоизоляция — типы и разновидности

Термин «теплоизоляция» относится к элементам разнообразных конструкций, роль которых стать термическим сопротивлением и максимально снизить скорость процессов теплопередачи в конструкции. На бытовом уровне этим словом называют материалы для таких элементов, а также совокупность мероприятий для их устройства.

Под каждый материал тепловой изоляции можно отвести полноценную статью с указанием всех свойств, преимуществ, недостатков и технических характеристик. Сейчас ограничимся общей информацией.

Содержание

  • Классы теплоизоляции
  • Формы выпуска тепловой изоляции

Классы теплоизоляции:

  • Техническая – применяется для трубопроводов, производственного оборудования, его отдельных элементов.
  • Строительная – обустройство изоляции ограждающих элементов построек различного назначения (стены, перекрытия, полы).
  • Специальная – вакуумная и отражающая теплоизоляция.

Материалы для термической изоляции и изделия из них можно условно сгруппировать по таким признакам:

  • Вид исходного сырья – органическая и неорганическая природа происхождения.
  • По форме – фасонные, плоские, рыхлые, шнуровые.
  • По структуре – зернистые (рассыпные), ячеистые, волокнистые.
  • По степени горючести – сгораемые, трудносгораемые, несгораемые.

Форма выпуска тепловой изоляции:

  • Жесткие изделия – плиты, скорлупы, кирпичи, блоки.
  • Гибкие – маты, жгуты, шнуры.
  • Рыхлые, сыпучие – керамзит, шарики пенополистирола, вата.

На практике материалы для теплоизоляции делят на следующие виды:

  1. Органические – для их производства применяются растительные отходы деревообработки, торфа, конопли, камыша, льна, шерсть животных. Полимеры и материалы на их основе составляют основную часть применяемых органических утеплителей. Из богатого ассортимента теплоизоляторов данного вида наибольший практический интерес представляют: камышит; торфяные сегменты, плиты и скорлупы; цементно-фибролитовые, древесноволокнистые, цементно-стружечные, арболитовые плиты; пробковые изделия; теплоизоляционные пенопласты; пористые пластмассы (мипора, поропласт).
  2. Неорганические – пенобетон; газобетон; минеральная вата; вспученный перлит.
  3. Смешанные – монтажные материалы с основой из асбеста и его смесей.

Физико-механические характеристики определяют выбор определенного теплоизолирующего материала для конкретного применения. Эти характеристики также могут ограничивать применяемость утеплителей. Приведем примеры. Изоляция мартеновских печей и холодильных отсеков, кроме низкой теплопроводности, должна иметь высокую прочность на сжатие из-за значительных нагрузок на перекрытие. Для транспорта и авиатехники очень важно, чтобы изоляция была легкой. Для изоляции горячих элементов оборудования и трубопроводов не подходит термоизоляция из животных и растительных материалов – ее максимальный температурный порог применения – 80°С-90°С.

Секрет очень малой теплопроводности материалов для теплоизоляции – неоднородность пористой структуры, заполненной воздухом, который и является одним из лучших теплоизоляторов. Характеристики пенопласта также обусловлены большим содержанием (98%) воздуха в закрытых ячейках гранул, из которых состоят плиты, скорлупы или рассыпная масса из гранул (шариков). Все указанные виды пенопласта производятся компанией ЧПТУП «ТМ-СтройПласт» с 2005 года. Большой опыт, современное оборудование и учет пожеланий заказчиков позволяют быть уверенными в качестве нашей сертифицированной продукции. И если изделия из пенопласта – это то, что Вам нужно на данный момент – не откладывая, звоните:
+375 (29) 357 90 02
+375 (29) 771 90 02.

Что такое теплоизоляция — Теплоизоляционные работы

Теплоизоляция (тепловая изоляция, термоизоляция) — защита зданий, тепловых промышленных установок (или отдельных их узлов), холодильных камер, трубопроводов и т.д. от нежелательного теплового обмена с окружающей средой. Так в строительстве и теплоэнергетике теплоизоляция необходима для уменьшения тепловых потерь в окружающую среду, в холодильной и криогенной технике — для защиты аппаратуры от притока тепла извне.

Теплоизоляция обеспечивается устройством специальных ограждений, выполняемых из теплоизоляционных материалов (в виде оболочек, покрытий и т.п.) и затрудняющих теплопередачу.

Эффективность теплоизоляции при переносе тепла теплопроводностью определяется термическим сопротивлением (R) изолирующей конструкции. Для однослойной конструкции R=d/l, где d — толщина слоя изолирующего материала, l — его коэффициент теплопроводности. Повышение эффективности Теплоизоляция достигается применением высокопористых материалов и устройством многослойных конструкций с воздушными прослойками.

 

Задача теплоизоляции зданий — снизить потери тепла в холодный период года и обеспечить относительное постоянство температуры в помещениях в течение суток при колебаниях температуры наружного воздуха. Применяя для теплоизоляции эффективные теплоизоляционные материалы, можно существенно уменьшить толщину и снизить массу ограждающих конструкций и таким образом сократить расход основных стройматериалов (кирпича, цемента, стали и др. ) и увеличить допустимые размеры сборных элементов.

 

Теплоизоляционные материалы характеризуются низкой теплопроводностью (коэффициент теплопроводности не более 0,2 вт/(мo К)), высокой пористостью (70-98%), незначительными объёмной массой и прочностью (предел прочности при сжатии 0,05-2,5 Мн/м2).

Основной показатель качества теплоизоляционных материалов — коэффициент теплопроводности. Однако его определение весьма трудоёмко и требует применения

специального оборудования, поэтому на практике в качестве такого показателя — марки теплоизоляционных материалов — используют выраженную в кг/м3 величину их объёмной массы в сухом состоянии, которая в достаточном приближении характеризует теплопроводность теплоизоляционных материалов.

Различают 19 марок теплоизоляционных материалов.

Основные области применения теплоизоляционных материалов:

  • ограждающие строительные конструкции,
  • технологическое оборудование (промышленных печей, тепловых агрегатов, холодильных камер ит. д.),
  • трубопроводы.

Типы теплоизоляционных материалов:

  • жёсткие (плиты, блоки, кирпич, скорлупы, сегменты и др.),
  • гибкие (маты, матрацы, жгуты, шнуры и др.),
  • сыпучие (зернистые, порошкообразные) или волокнистые.

Виды теплоизоляционных материалов:

  • органические,
  • неорганические,
  • смешанные.

Источник: http://www.ppu21.ru/article/24.html?mc=288

В вашем браузере отключена поддержка JavaScript. Для просмотра этой страницы нужно включить JavaScript. Чтобы узнать, как это сделать, нажмите здесь.

Теплоизоляторы | Физика Фургон

Категория
Выберите категориюО фургоне физикиЭлектричество и магнитыВсе остальноеСвет и звукДвижение вещейНовая и захватывающая физикаСостояния материи и энергииКосмосПод водой и в воздухе

Подкатегория

Поиск

Задайте вопрос

Последний ответ: 22. 10.2007

В:

Как работает теплоизолятор?
— Сара
Англия

A:

Sarah —

Теплоизолятор — это то, что препятствует перемещению тепла из одного места в другое. Существует 3 основных пути распространения тепла: конвекция, теплопроводность и излучение. Обычно фраза «теплоизолятор» относится к материалу, который блокирует проводимость.

Проводимость — это то, что происходит, когда что-то горячее физически касается чего-то холодного. Тепло переходит от горячей поверхности к холодной, нагревая ее. Чтобы этого не произошло, вы используете материал, через который тепло не может проходить очень легко (теплоизолятор).

Но что это за материал? Проведите несколько экспериментов. Заверните чашку с очень горячей водой в материал, который, по вашему мнению, может быть изолятором (например, в одеяло). Положите руку на внешнюю сторону изолятора и посмотрите, насколько она горячая. Попробуйте с разными материалами. Чем жарче снаружи, тем больше тепла уходит изнутри и тем хуже изолятор. Попробуйте то же самое с кубиком льда. Какой из них кажется самым холодным снаружи?

-Тамара

Вам также может быть интересно, как на самом деле работает теплоизолятор.

Ключевым моментом в избавлении от теплопроводности является очень мало путей, по которым тепловая энергия может легко перемещаться. Один из лучших способов перемещения тепловой энергии — это энергия электронов, которые проводят электричество в металлах, поэтому лучше избегать металлов. Другой — это крошечные звуковые волны, поэтому вам не нужен хороший кристалл (например, сапфир), в котором звуковые волны проходят долгий путь, прежде чем отражаются в новом направлении. Газы (например, воздух) имеют низкую теплопроводность, но они склонны к тепловой конвекции, при которой большие потоки текучего материала (движимые силой тяжести) переносят тепло. Эти токи могут быть прерваны очень тонкими стенками из пластика, например, из пенополистирола, отличного теплоизолятора. Одеяла используют волокна ткани, чтобы частично остановить конвекцию.

Чтобы получить наилучшую теплоизоляцию, иногда необходимо также подавить тепловое излучение (в основном инфракрасное излучение). Этого можно добиться с помощью очень тонких отражающих металлических слоев, подобных тем, которые вы видите на стеклянном термосе. Но разве мы не говорили, что металла следует избегать? Вы, конечно, не хотите, чтобы металл проникал между частями, которые должны иметь разную температуру, но это нормально, когда все металлические слои имеют одну температуру — им некуда отводить тепло.

Майк В.

(опубликовано 22.10.2007)

Дополнение №1: проведение экспериментов

В:

Я провожу эксперимент с использованием воды и различных изоляторов. Я хочу знать, как сделать это наилучшим образом для истинного научного результата. Я планирую использовать небольшие пластиковые пробирки объемом 25 мл, помещенные в картонные контейнеры для мороженого. Я удостоверюсь, что температура воды измеряется, прежде чем выставлять контейнеры на улицу на определенный период. Я рассматриваю возможность использования: перьев, кусочков пенопласта, газет, песка и теплоизоляции дома. Можете ли вы дать мне какой-либо совет по поводу альтернативных изоляторов или где искать, ПОЧЕМУ разные изоляторы работают по-разному? Я хочу преуспеть в этом проекте и нахожу его интересным, поскольку моя семья проводит так много времени на свежем воздухе!
— Марион Хаммер (11 лет)
03062

Ответ:

Привет, Марион. Ключом к проведению хорошего научного эксперимента обычно является вопрос, на который вы хотите ответить. Вы можете разработать эксперимент вокруг этого вопроса.

Ваш вопрос «Какой материал изолирует воду от изменений внешней температуры?»

Mike W.

(опубликовано 22.02.2017)

Дополнение к этому ответу

Похожие вопросы

  • теплоизоляция

  • обратимая теплопередача?

  • Медленно дренирование горячей воды

  • Тепловая вместимость при постоянном объеме или давлении

  • Сохранение холода молока

  • .
  • теплоемкость при постоянном давлении или объеме

  • вязко-хрупкий переход

Все еще интересно?

Вопросы и ответы по Expore в связанных категориях

  • Температура и жара

Stay Warm with Thermal Insulation

  • Share on Facebook

  • Share on Twitter

  • Share on Reddit

  • Share on LinkedIn

  • Share via Email

  • Print

Want согреться этой зимой? Попробуйте это «крутое» занятие и узнайте, какие виды изоляции работают лучше всего и почему. Кредит: Джордж Рецек

Ключевые понятия
Физика
Теплопередача
Изоляция
Материаловедение

Введение
Что вы делаете, когда зимой становится очень холодно? Вы, вероятно, включаете обогреватель, надеваете дополнительный слой одежды или закутываетесь под теплое одеяло. Но задумывались ли вы когда-нибудь о том, почему куртка помогает согреться? Почему наша одежда сделана из ткани, а не из фольги? Узнайте ответы в этом упражнении; ваши результаты могут даже помочь вам найти лучший способ согреться в холода!

Фон
Тепло – это форма энергии. Вам нужна энергия, чтобы что-то нагреть: например, чашку чая. Для приготовления чая вы, вероятно, используете энергию электричества или газа. Однако, если ваш чай нагрелся, он не будет оставаться горячим вечно. Просто оставьте чашку чая на столе на некоторое время, и вы уже знаете, что чем дольше вы ждете, тем холоднее станет. Это связано с явлением, называемым теплопередачей, которое представляет собой поток энергии в виде тепла. Если два объекта имеют разную температуру, тепло автоматически переходит от одного объекта к другому, как только они соприкасаются. Тепловая энергия передается от более горячего объекта к более холодному. В случае с чаем тепло жидкости передается окружающему воздуху, который обычно холоднее чая. Как только оба объекта достигнут одинаковой температуры, передача тепла прекратится. Теплопередача посредством движения жидкостей (жидкостей или газов) называется конвекцией.

Другим видом теплопередачи является теплопроводность, при которой энергия перемещается через вещество (обычно твердое тело) от одной частицы к другой (в отличие от конвекции, когда движется само нагретое вещество). Нагревание ручки кастрюли может быть примером проводимости.

Тепло также может передаваться излучением. Вы могли испытать это, сидя у костра. Хотя вы не прикасаетесь к огню, вы чувствуете, как он излучает тепло вам в лицо, даже если на улице холодно. Если вы любите пить чай горячим, вы можете спросить, как можно уменьшить теплопередачу и как чай не остывает? Ответ — теплоизоляция. Изоляция означает создание барьера между горячим и холодным объектом, который снижает теплопередачу либо за счет отражения теплового излучения, либо за счет уменьшения теплопроводности и конвекции от одного объекта к другому. В зависимости от материала барьера изоляция будет более или менее эффективной. Барьеры, которые очень плохо проводят тепло, являются хорошими теплоизоляторами, тогда как материалы, которые очень хорошо проводят тепло, обладают низкой изолирующей способностью. В этом упражнении вы проверите, какие материалы являются хорошими или плохими теплоизоляторами, с помощью стакана горячей воды. Какой материал вы считаете наиболее эффективным?

Материалы

  • Пять стеклянных банок с крышками
  • Ножницы (и взрослый, чтобы помочь с вырезанием)
  • Лента
  • Алюминиевая фольга
  • Пузырчатая пленка
  • Шерстяной шарф или другая шерстяная одежда
  • Бумага
  • Горячая водопроводная вода
  • Термометр
  • Холодильник
  • Таймер
  • Бумага для письма
  • Ручка или карандаш0070

Подготовка

  • Отрежьте кусок алюминиевой фольги, пузырчатой ​​пленки и бумаги (при необходимости обратитесь за помощью к взрослым). Каждая часть должна быть достаточно большой, чтобы поместиться трижды вокруг стенок стеклянной банки.
  • Возьмите кусок алюминиевой фольги и оберните им края одной из банок. У вас должно быть три слоя фольги вокруг стеклянной банки. Используйте скотч, чтобы прикрепить фольгу к банке.
  • Затем оберните пузырчатой ​​пленкой еще одну банку так, чтобы стекло также было покрыто в три слоя. Не забудьте приклеить пузырчатую пленку к банке.
  • Используйте вырезанную бумагу, чтобы обернуть третью банку тремя слоями бумаги. Еще раз прикрепите бумагу к стеклянной банке.
  • Возьмите еще одну стеклянную банку и оберните ее шарфом или другой шерстяной тканью. Сделайте только три слоя обертывания и убедитесь, что шарф остается прикрепленным к банке.
  • Оставьте последнюю банку без упаковки. Это будет вашим контролем.

Процедура

  • Наполните каждую банку одинаковым количеством горячей воды из крана.
  • С помощью термометра измерьте температуру в каждой банке. Опустите палец в воду в каждой банке (будьте осторожны, если водопроводная вода очень горячая) Как ощущается температура воды?
  • Запишите температуру для каждой банки и закройте крышки. Все температуры одинаковые или есть различия? Насколько велики различия?
  • Откройте холодильник и положите внутрь все пять баночек. Убедитесь, что они все еще надежно завернуты. Почувствуйте температуру холодильника — на что похожа его температура?
  • Положите термометр в холодильник. Какую температуру показывает термометр, когда вы кладете его в холодильник?
  • Когда все банки будут в холодильнике, закройте дверцу холодильника и установите таймер на 10 минут. Как вы думаете, что за это время произойдет с банками и горячей водой?
  • Через 10 минут откройте холодильник и вынесите все банки наружу. Баночки кажутся другими?
  • Откройте каждую банку по одной и измерьте температуру воды термометром. Также почувствуйте температуру пальцем. Изменилась ли температура? Как она изменилась по термометру?
  • Повторите измерение температуры для каждой банки и запишите температуру для каждого упаковочного материала. Температура в каждой банке менялась одинаково? Какой оберточный материал привел к наименьшему изменению температуры, а какой к наибольшему?
  • Для лучшего сравнения рассчитайте разницу температур в начале и в конце теста для каждой банки (температура в начале и температура после 10 минут пребывания в холодильнике). По вашим результатам можете ли вы сказать, какой материал является лучшим или самым слабым теплоизолятором?
  • Дополнительно: Будут ли температуры продолжать меняться одинаковым образом для каждого материала? Вы можете снова закрыть каждую банку и поставить их обратно в холодильник еще на 10 минут. На этот раз результаты другие или одинаковые?
  • Extra : Изменяется ли температура воды в холодильнике так же, как и в морозильной камере, или при комнатной температуре? Повторите тест, но на этот раз вместо того, чтобы ставить стеклянные банки в холодильник, поместите их в морозильную камеру или оставьте при комнатной температуре. Насколько изменится температура воды за 10 минут? Различные упаковочные материалы ведут себя по-разному?
  • Extra : Попробуйте найти другие материалы, которые, по вашему мнению, являются хорошими или плохими теплоизоляторами, и протестируйте их. Какой материал работает лучше всего? Можете ли вы придумать причину, почему?
  • Extra : Если вы достанете банки из холодильника через 10 минут, вы, вероятно, все еще будете измерять разницу температур между водой внутри банки и температурой внутри холодильника. Вы можете дольше держать стеклянные банки в холодильнике и измерять их температуру каждые 15–30 минут. Через сколько времени температура воды перестанет меняться? Какова конечная температура воды внутри стакана?
  • Extra : Помимо выбора правильного изоляционного материала, какие есть другие способы улучшить теплоизоляцию? Повторите этот тест только с одним упаковочным материалом. На этот раз измените толщину изоляционного слоя. Находите ли вы зависимость между толщиной изоляционного слоя и изменением температуры в холодильнике?

Наблюдения и результаты
Ваша горячая вода значительно остыла за 10 минут пребывания в холодильнике? Хотя температура холодильника очень низкая, горячая вода имеет высокую температуру. По мере того, как тепловая энергия течет от горячего объекта к холодному объекту, тепловая энергия вашей горячей воды будет передаваться окружающему холодному воздуху внутри холодильника, как только вы поместите внутрь стеклянные банки. Наиболее важным механизмом передачи тепла в этом случае является конвекция, что означает, что воздух рядом с горячей банкой нагревается горячей водой. Затем теплый воздух заменяется холодным воздухом, который также подогревается. В то же время холодный воздух охлаждает воду внутри кувшина. Тепло горячей воды отводится потоком холодного воздуха вокруг чашки. Если вы оставили банки в холодильнике достаточно долго, вы могли заметить, что температура меняется до тех пор, пока горячая вода не достигнет температуры внутри холодильника. Без разницы температур между водой и холодильником теплообмен прекратится.

Тепло от воды также теряется за счет теплопроводности: передача тепла через материал, который зависит от теплопроводности самого материала. Стеклянная банка может относительно хорошо проводить тепло. Вы замечаете, что когда вы касаетесь стеклянной банки с горячей водой, стекло тоже становится горячим. Какой эффект оказали различные упаковочные материалы? Вы должны были заметить, что с упаковочными материалами температура воды через 10 минут в холодильнике была выше по сравнению с неупакованным контролем. Почему? Обертывание стеклянной банки уменьшает передачу тепла от горячей воды к холодному воздуху внутри холодильника. Использование оберточных материалов с очень низкой теплопроводностью снижает потери тепла за счет теплопроводности. В то же время изолятор также может нарушать или уменьшать поток холодного воздуха вокруг стеклянной банки, что приводит к меньшим потерям тепла за счет конвекции.

Одним из способов уменьшения конвекции является создание воздушных карманов вокруг банки, например, с помощью таких изоляторов, как пузырчатая пленка, ткань или шерсть, которые имеют много воздушных карманов.